metabelian, supersoluble, monomial
Aliases: C23.2F7, C23.D7⋊C3, (C2×C14)⋊3C12, C22⋊2(C7⋊C12), C14.9(C2×C12), (C2×Dic7)⋊2C6, C14.11(C3×D4), C22.7(C2×F7), (C22×C14).2C6, C2.3(Dic7⋊C6), (C2×C7⋊C12)⋊2C2, C2.5(C2×C7⋊C12), C7⋊2(C3×C22⋊C4), C7⋊C3⋊2(C22⋊C4), (C22×C7⋊C3)⋊1C4, (C2×C7⋊C3).11D4, (C2×C14).6(C2×C6), (C23×C7⋊C3).1C2, (C22×C7⋊C3).6C22, (C2×C7⋊C3).9(C2×C4), SmallGroup(336,22)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C14 — C22×C7⋊C3 — C2×C7⋊C12 — C23.2F7 |
Generators and relations for C23.2F7
G = < a,b,c,d,e | a2=b2=c2=d7=1, e6=b, ab=ba, eae-1=ac=ca, ad=da, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d5 >
Subgroups: 272 in 68 conjugacy classes, 30 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C7, C2×C4, C23, C12, C2×C6, C14, C14, C14, C22⋊C4, C7⋊C3, C2×C12, C22×C6, Dic7, C2×C14, C2×C14, C2×C14, C2×C7⋊C3, C2×C7⋊C3, C2×C7⋊C3, C3×C22⋊C4, C2×Dic7, C22×C14, C7⋊C12, C22×C7⋊C3, C22×C7⋊C3, C22×C7⋊C3, C23.D7, C2×C7⋊C12, C23×C7⋊C3, C23.2F7
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C12, C3×D4, F7, C3×C22⋊C4, C7⋊C12, C2×F7, C2×C7⋊C12, Dic7⋊C6, C23.2F7
(1 6)(2 4)(3 8)(5 7)(9 15)(10 28)(11 17)(12 30)(13 19)(14 32)(16 22)(18 24)(20 26)(21 27)(23 29)(25 31)(33 52)(34 40)(35 54)(36 42)(37 56)(38 44)(39 46)(41 48)(43 50)(45 51)(47 53)(49 55)
(1 3)(2 4)(5 7)(6 8)(9 15)(10 16)(11 17)(12 18)(13 19)(14 20)(21 27)(22 28)(23 29)(24 30)(25 31)(26 32)(33 39)(34 40)(35 41)(36 42)(37 43)(38 44)(45 51)(46 52)(47 53)(48 54)(49 55)(50 56)
(1 8)(2 5)(3 6)(4 7)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(40 53)(41 54)(42 55)(43 56)(44 45)
(1 35 43 12 39 16 20)(2 17 13 36 9 40 44)(3 41 37 18 33 10 14)(4 11 19 42 15 34 38)(5 29 25 49 21 53 45)(6 54 50 30 46 22 26)(7 23 31 55 27 47 51)(8 48 56 24 52 28 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56)
G:=sub<Sym(56)| (1,6)(2,4)(3,8)(5,7)(9,15)(10,28)(11,17)(12,30)(13,19)(14,32)(16,22)(18,24)(20,26)(21,27)(23,29)(25,31)(33,52)(34,40)(35,54)(36,42)(37,56)(38,44)(39,46)(41,48)(43,50)(45,51)(47,53)(49,55), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32)(33,39)(34,40)(35,41)(36,42)(37,43)(38,44)(45,51)(46,52)(47,53)(48,54)(49,55)(50,56), (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53)(41,54)(42,55)(43,56)(44,45), (1,35,43,12,39,16,20)(2,17,13,36,9,40,44)(3,41,37,18,33,10,14)(4,11,19,42,15,34,38)(5,29,25,49,21,53,45)(6,54,50,30,46,22,26)(7,23,31,55,27,47,51)(8,48,56,24,52,28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56)>;
G:=Group( (1,6)(2,4)(3,8)(5,7)(9,15)(10,28)(11,17)(12,30)(13,19)(14,32)(16,22)(18,24)(20,26)(21,27)(23,29)(25,31)(33,52)(34,40)(35,54)(36,42)(37,56)(38,44)(39,46)(41,48)(43,50)(45,51)(47,53)(49,55), (1,3)(2,4)(5,7)(6,8)(9,15)(10,16)(11,17)(12,18)(13,19)(14,20)(21,27)(22,28)(23,29)(24,30)(25,31)(26,32)(33,39)(34,40)(35,41)(36,42)(37,43)(38,44)(45,51)(46,52)(47,53)(48,54)(49,55)(50,56), (1,8)(2,5)(3,6)(4,7)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53)(41,54)(42,55)(43,56)(44,45), (1,35,43,12,39,16,20)(2,17,13,36,9,40,44)(3,41,37,18,33,10,14)(4,11,19,42,15,34,38)(5,29,25,49,21,53,45)(6,54,50,30,46,22,26)(7,23,31,55,27,47,51)(8,48,56,24,52,28,32), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56) );
G=PermutationGroup([[(1,6),(2,4),(3,8),(5,7),(9,15),(10,28),(11,17),(12,30),(13,19),(14,32),(16,22),(18,24),(20,26),(21,27),(23,29),(25,31),(33,52),(34,40),(35,54),(36,42),(37,56),(38,44),(39,46),(41,48),(43,50),(45,51),(47,53),(49,55)], [(1,3),(2,4),(5,7),(6,8),(9,15),(10,16),(11,17),(12,18),(13,19),(14,20),(21,27),(22,28),(23,29),(24,30),(25,31),(26,32),(33,39),(34,40),(35,41),(36,42),(37,43),(38,44),(45,51),(46,52),(47,53),(48,54),(49,55),(50,56)], [(1,8),(2,5),(3,6),(4,7),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(40,53),(41,54),(42,55),(43,56),(44,45)], [(1,35,43,12,39,16,20),(2,17,13,36,9,40,44),(3,41,37,18,33,10,14),(4,11,19,42,15,34,38),(5,29,25,49,21,53,45),(6,54,50,30,46,22,26),(7,23,31,55,27,47,51),(8,48,56,24,52,28,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 7 | 12A | ··· | 12H | 14A | ··· | 14G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 7 | 12 | ··· | 12 | 14 | ··· | 14 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 7 | 7 | 14 | 14 | 14 | 14 | 7 | ··· | 7 | 14 | 14 | 14 | 14 | 6 | 14 | ··· | 14 | 6 | ··· | 6 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | - | + | |||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | D4 | C3×D4 | F7 | C7⋊C12 | C2×F7 | Dic7⋊C6 |
kernel | C23.2F7 | C2×C7⋊C12 | C23×C7⋊C3 | C23.D7 | C22×C7⋊C3 | C2×Dic7 | C22×C14 | C2×C14 | C2×C7⋊C3 | C14 | C23 | C22 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 4 | 4 | 2 | 8 | 2 | 4 | 1 | 2 | 1 | 4 |
Matrix representation of C23.2F7 ►in GL8(𝔽337)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
119 | 336 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 336 |
336 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 336 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 336 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 336 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 124 | 125 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 213 | 212 |
209 | 308 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 128 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 212 | 336 | 336 |
0 | 0 | 336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 336 | 0 | 0 | 0 |
0 | 0 | 125 | 1 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(337))| [1,119,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,124,1,0,0,0,0,0,0,125,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,213,0,0,0,0,0,0,1,212],[209,0,0,0,0,0,0,0,308,128,0,0,0,0,0,0,0,0,0,0,0,336,0,125,0,0,0,0,0,0,0,1,0,0,0,0,0,0,336,1,0,0,1,0,212,0,0,0,0,0,0,0,336,0,0,0,0,0,0,1,336,0,0,0] >;
C23.2F7 in GAP, Magma, Sage, TeX
C_2^3._2F_7
% in TeX
G:=Group("C2^3.2F7");
// GroupNames label
G:=SmallGroup(336,22);
// by ID
G=gap.SmallGroup(336,22);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-7,72,313,10373,1745]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^7=1,e^6=b,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^5>;
// generators/relations